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Part1

ML tools for neuroscience
(studying the brain)
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You know, people think mathematics is
complicated. Mathematics is the simple bit.
It's the stuff we can understand.

It's cats that are complicated.

John Horton Conway
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Conway’s game of life

= Any live cell with two or three live neighbors survives.
= Any dead cell with three live neighbors becomes a live cell.
= All other live cells die in the next generation. Similarly, all other dead cells stay dead.
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@ Vs. Turing Machines, von Neumann
machines, ...

https://en.wikipedia.org/.
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How does the brain
compute?

vs. Turing Machines, von Neumann
machines, ...
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Santiago Ramon y Cajal



=PrL Neuracircuits are staggeringly complex
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Felleman and Van Essen Cerebral Cortex 1991 Shepherd and Yamawaki Nature review neuroscience 2021



=PFL  How do neuroscientists
localize brain function?



=PrL Patient H.M.

Frontal
lobes

Hippocampus

Medial
septum

https://en.wikipedia.org/wiki/Henry_Molaison
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Milner (1962) Physiologie de I’hippocampe.

Number of errors in each attempt

40
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1st day

Milner 1962: mirror drawing could be learned over a period of days by the severely
amnesic patient H.M. in the absence of any conscious memory of having practiced
the task before

2nd day 3rd day

10 1 10 1 10
Attempts each day
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ePrL Memory systems of the brain

Non-declarative memory is
expressed through performance
rather than recollection.

MEMORY

DECLARATIVE NONDECLARATIVE

FACTS eeeqeeee EVENTS PROCEDURAL PRIMING IATIVE
(SKILLS AND CLASSICAL  LEARNING
AND PERCEPTUAL CONDITIONING
HABITS) LEARNING

EMOTIONAL SKELETAL
RESPYNSES RESIT)NSES

MEDIAL TEMPORAL LOBE STRIATUM NEOCORTEX AMYGDALA CEREBELLUM REFLEX
DIENCEPHALON PATHWAYS

= Squire (2004) Neurobiology of Learning and Memory



=PFL  Methods for measuring brain function
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Basset, Nat Neuro 2017



=PFL  Neural data poses many hard inference problems to
extract task relevant variables

Neural data:

= Cell segmentation, brain area segmentation
= Spike sorting

= Connectomics

Behavior:

= Pose estimation

= Behavior understanding,
= Action recognition



=PFL  Proteomics of spatially identified tissues in
whole organs

DISCO-MS: a new technology for spatial-molecular profiling of intact organs

Step 1 Step 2 Step 3 Step 4
DISCO/SHANEL Whole organ Imaging & deep ROIs extraction from healthy Ultra sensitive Mass spectrometry
organ clearing learning guided image analyses & diseased brains measurements & anaylses
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Proteomics of spatially identified tissues in whole organs, Ertlrk lab, Helmholtz Institute



Tissue clearing technologies provide unbiased
view of intact organs/organisms at cell level

Proteomics of spatially identified tissues in whole organs, Erturk lab, Helmholtz Institute



=PFL A connectomics study of a petascale fragment of human
cerebral cortex

Shapson-Coe et al., Lichtman Lab, Harvard U
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= Video & image credits: Tolias lab, Xu lab at Cornell, Reid and daCosta labs at AIBS,
Seung lab at Princeton, Paninski lab @ Columbia.
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Measuring in vivo brain
activity
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Single unit recoding: “Moore’s law”
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How advances in neural recording affect data analysis, Stevenson & Kording Nature Neuroscience 2011



=PFL  Single unit recoding: “Moore’s law”
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=PFL - Single units in the
human temporal lobe

Neurons can correspond to complex concepts
shown in different ways in a selective fashion,
e.g. “buildings” or “math”
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. Rasterplots and peristimulus histograms _
for 3 neurons with stimuli Quiroga, Cell 2019



C Example waveforms
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=PFL Neuropixel 2.0:
high-density probe e .
for stable, long-term
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=PFL 2 photon microscopy

= Video & image credits: Tolias lab, Xu lab at Cornell, Reid and daCosta labs at AIBS,
Seung lab at Princeton, Paninski lab @ Columbia.
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Video & image credits: Tolias lab, Xu lab at Cornell, Reid and daCosta labs at AIBS,
Seung lab at Princeton, Paninski lab @ Columbia.




=P*L " Linking behavior and neural activity

Courtesy: Mackenzie Mathis Lab, EPFL



=PFL  Challenges for measuring behavior

= Many species
» Fat tail distributions of behaviors
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Gunnar Johansson -- Video by James Maas, (Cornell University, 1971) https://www.youtube.com/watch?v=1F5ICP9SYLU




=P7L Measuring behavior: Pose estimation

Pixel Representation

= A. Mathis, Schneider, Lauer, M. Mathis, 2020, Neuron
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DeeplLabCut

Neurons

From pose to kinematics, actions,

kinematics

t-
Behavior Transitions - Sample Hour

3
H

roaming

biomechanics
/ modeling

e motion capture

e constrain model

neural coding......

A Primer on Motion Capture with Deep Learning:
Principles, Pitfalls, and Perspectives

Alexander Mathis,’-**" Steffen Schneider,”* Jessy Lauer,’-*" and Mackenzie Weygandt Mathis™-**"

1Center for Neuroprosthetics, Center for Intelligent Systems, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
2Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

*The Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA

“University of Tubingen and Intemational Max Planck Research School for Intelligent Systems, Tubingen, Germany
“Correspondence: alexander.ma pfl.ch (A.M.), mackenzie.mathis@epfl.ch (M.W.M.)

https://doi.org/10.1016/].neur 17




=PrL Marker-based pose estimation

Bernstein, 1920 Vargas-Irwin et al. 2010

|
Reviewed in A. Mathis, Schneider, Lauer, M. Mathis, 2020, Neuron
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Appealing properties:

Work “in the wild”

Robust (backgrounds, individuals, etc.)
Relatively fast

No body model

No (manual) parameter tuning

deep neural networks

image —>

—> pose

Deep learning revolution for human pose estimation

MoDeep — starting 2014
DeepPose
Conv. PoseMachines

béeperCut
OpenPose

I.-I.RNet
TokenPose
BUCTD
ViTPose

> 60,000 papers on human
pose estimation with Deep
Learning

train \
A lot of labeled

images (>1076 joints!)



Label features in frames

DeeplabCut: a toolbox for markerless
pose estimation via transfer learning

Train DNN ’

ResNet-50
(pre-trained <L~
on ImageNet)

,,,,»/;( /v\f"j:f"f;/
<
deconvolutional i

layers * ‘¢¢
<

141 labeled frames

A. Mathis .... M.W. Mathis* and Bethge*
Nature Neurosci, 2018



3D cheetah pose estimation in the wild to study tail biomechanics
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€PFL 3D cheetah pose estimation in the wild to study tail biomechanics

m Joska et al. ICRA 2021
Nath et al. Nature Protocols 2019
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=PrL DeepLabCut: a toolbox for efficient markerless pose estimation
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Cachot et al. 2021
Science Advances * www.deeplabcut.org

Active user community (i.e., help!)
Collaborative ©

Zuckerberg
>110 code contributors on GitHub o, ° -
> 700,000 downloads Inltlatlve @

> 3,000 citations i S . 2 / Tiéoking Beepatut ~ "
Used in over 1,000 institutes around the world Nature Neuro 2018, Nature Protocols 2019, Neuron 2020, WACV 2021, ICRA, 2021, CVPR-W
2021, Nature Methods 2022, CVPR-W 2023, ICCV 2023, Nature Comms 2024



http://www.deeplabcut.org/
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Transfer learning enables

pose estimation with less data

Pre-trained! (i.e. on ImageNet)

image——>»  Predictor = pose
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train

Only a few examples (10-200)
for most applications

Deep learning + transfer learning

/ Deep learning

Amount of d=:= task-related data

Andrew Ng



DeepLabCut
WIildCLIP - Gabeff, Russwurm, Tuia, Mathis
CVPR CV4Animals (oral) 2023 & IJCV 2024

<>

AmadeusGPT+ % ‘

Ye et al. NeurlPS 23

Machine Learning @ ﬂk
Deep Foundation Models %’,

Transfer learning!

Learning
Emergence of... “how” features functionalities
Homogenization of...  learning algorithms architectures  models

¢ >

DeepLabCut:

w2 software package for
L»_—_  animal pose estimation

Ye et al. Nat Coms 2024

|
From: On the Opportunities and Risks of Foundation Models by Bommasani et al, arxiv 2021






=prL AmadeusGPT:

a natural language interface
for interactive animal behavioral analysis

Towards more userfriendly and

more intuitive (codefree) interfaces
building on foundation models

S. Ye, Lauer, Zhou, A Mathis, MW Mathis NeurlPS 2023

% Input Video £ Query

“When is the mouse
on the treadmill?”

v v

- AmadeusGPT & )

D oo +—> D

Generate Code based on
Core API & Integrations
Methods

def task_program(): . =====e=
behavior_analysis = AnimalBehaviorAnalysis() get_object_names() -> List[str]

class AnimalBehaviorAnalysis:

get names of all objects

object_names = ['18'] wn
fig, ax = \ def animals_state_events(self,
state_type,
behavior_analysis.plot_object_ethogram(object_names) comparison,
return fig, ax bodyparts =

['all'y,
Python Interpreter P

& ax - O0snu

use pretrained DLC model use pretrained SAM model

/& Output v

“Result for query : 12,836 frames
the mouse is on the treadmill (total

\ video length is 107,800 frames).” /




=PFL  |ntermediate conclusions
Modern tools capture rich datasets of the brain

Machine learning is a work horse for many tasks in
neuroscience

= pose estimation, animal identification, behavior understanding ...

= cell segmentation, spike sorting ...

Many underlying algorithms (e.g., CNNs) are loosely inspired by how
the brain works



